

§0. 摘要

我司 MS 电阻,即合金箔电阻,属于合金电阻系列,在客户端的电路使用中大部分是承担电流检测片的作用,所以耐电流能力是衡量合金箔电阻性能的一大指标,但是作为一个电阻使用,阻值的稳定性和准确性就至关重要,在不同频率的工作环境下,由于合金箔电阻本身电感值的存在,会产生不同大小的感抗,如果是一个高阻电阻,感抗对产品阻值的影响可以忽略不计,但作为一个低阻电阻产品,感抗对测量阻值的影响是显著的,特此针对关于 MS 的高频下阻值变化做以下研究。

§1. 感抗存在的机理

图 1: 低阻值 电流检测电阻器的等效电路

电感值不仅会在环绕线路中产生,直线电路中也会有微小的感值存在,既然是电感值,就有电感的特性,通直流,阻交流,当通入交流电时,会产生感抗,线路中体现的阻值就是电阻本身的直流阻抗加上感抗,感抗计算公式如下:

 $XL=2 \pi fL$

XL 表示感抗,单位欧姆,符号 Ω ; π 表示圆周率; f 表示输入交流电的频率,单位赫兹,符号Hz; L 表示电感值,单位亨利,符号H。

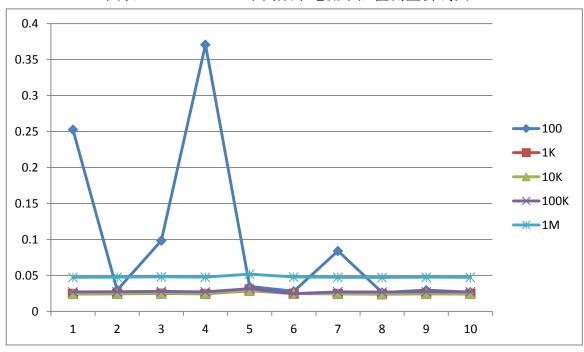
§ 2. 实测不同频率下 MS 电阻的阻值

表 1: MS06 10mΩ不同频率电流下阻值测量记录表

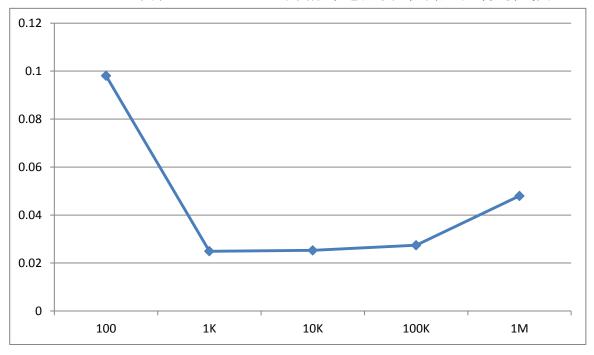
	, , , , , , , , , , , , , , , , , , ,									
阻值(Ω)										
频率 (Hz)	1	2	3	4	5	6	7	8	9	10
100	0. 25251	0. 02971	0. 09841	0. 37069	0. 03465	0. 02798	0. 08405	0. 02639	0. 0296	0. 02674
1K	0. 02434	0. 02457	0. 02489	0. 02449	0. 02876	0. 02469	0. 02442	0. 02405	0. 02457	0. 02432
10K	0. 02471	0. 02492	0. 02528	0. 02486	0. 02913	0. 02506	0. 02476	0. 02444	0. 02493	0. 0247
100K	0. 02713	0. 02732	0. 02774	0. 02726	0. 03157	0. 02474	0. 02719	0. 02686	0. 02735	0. 02712
1M	0. 04739	0. 04769	0. 04801	0. 04756	0. 05182	0. 04776	0. 04738	0. 04709	0. 04754	0. 04741

表 2: MS12 10mΩ不同频率电流下阻值测量记录表

V = V = = = = = = = = = = = = = = = = =										
阻值 (Ω)										
频率 (Hz)	1	2	3	4	5	6	7	8	9	10
100	0. 02437	0. 02487	0. 02439	0. 02467	0. 02527	0.02423	0.02486	0. 02487	0. 0244	0.02674
1K	0. 02454	0. 02485	0. 02451	0. 02507	0. 02458	0. 02435	0. 02459	0. 02462	0. 02433	0. 02476
10K	0. 02492	0. 02521	0. 02486	0. 02543	0. 02472	0. 02472	0. 02495	0. 02496	0. 02468	0. 02508
100K	0. 02744	0. 02773	0. 02804	0. 02791	0. 02742	0. 02725	0. 02747	0. 02747	0. 02721	0. 02759
1M	0. 04826	0. 04863	0. 04879	0. 04872	0. 04823	0.04812	0.04826	0. 04831	0. 04805	0. 04842

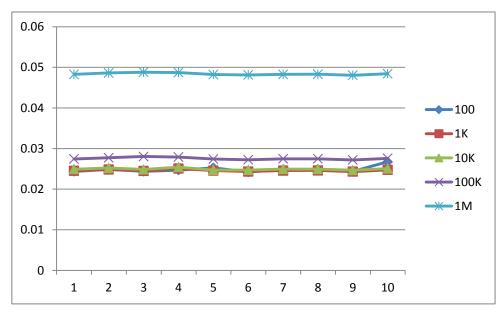

表 3: 数据分析

频率		MS06 10m S	2	MS12 10mΩ			
(Hz)	Max	Min	Avg	Max	Min	Avg	
100	0. 37069	0. 02639	0. 098073	0. 02674	0. 02423	0. 024867	
1K	0. 02876	0. 02405	0. 024910	0. 02507	0. 02433	0. 024620	
10K	0. 02913	0. 02444	0. 025279	0. 02543	0. 02468	0. 024953	
100K	0. 03157	0. 02474	0. 027428	0. 02804	0. 02721	0. 027553	
1M	0. 05182	0. 04709	0. 047965	0. 04879	0. 04805	0. 048379	

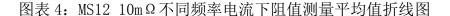


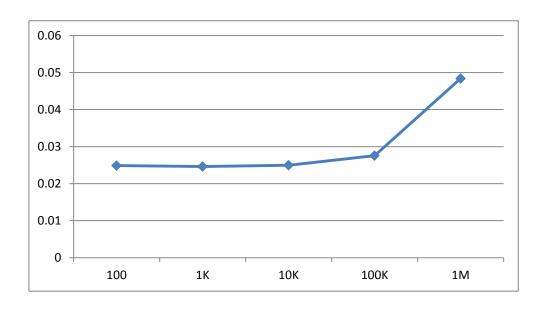
§3. 结论

图表 1: MS06 10mΩ不同频率电流下阻值测量折线图



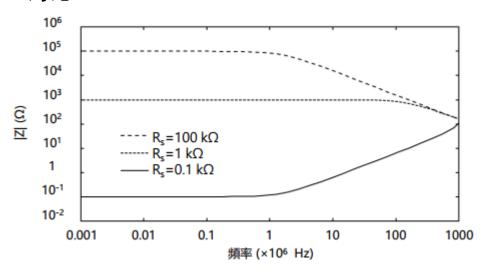
图表 2: MS06 10mΩ不同频率电流下阻值测量平均值折线图





结论 1: MS06 $10m\Omega$ 在 $1KHz^{\sim}1M$ 频率下测量都很稳定, $1K^{\sim}1MHz$ 下测量阻值基本持平,都在 $24m\Omega^{\sim}31m\Omega$ 之间,到 1MHz 测量,阻值在 $47m\Omega^{\sim}51m\Omega$ 之间,与 $1K^{\sim}1MHz$ 下测量相比平均有 $22m\Omega$ 的增长;100Hz 阻值测量颗与颗之间差异较大,(最大–最小)有 $344.3m\Omega$ 的差异。

图表 3: MS12 10mΩ不同频率电流下阻值测量折线图



结论 2: MS12 $10m\Omega$ 在 $100Hz^{2}1M$ 频率下测量都很稳定, $100^{2}10KHz$ 下测量阻值基本持平,都在 $24m\Omega^{2}27m\Omega$ 之间;到 100KHz 测量,阻值在 $27m\Omega^{2}28m\Omega$ 之间,与 $100^{2}10KHz$ 下测量相比平均有 $1m\Omega$ 的增长;到 1MHz 测量,阻值在 $48m\Omega^{2}49m\Omega$ 之间,与 $100^{2}10KHz$ 下测量相比平均有 $23.5m\Omega$ 的增长。

§ 4. 与 KOA 对比

我司实际测试 MS06 $10m\Omega$ 和 MS12 $10m\Omega$ 不同频率大电流下阻值测量折线图走势与 KOA 走势相同,不同点在于走势图的拐点不同,我司产品测试拐点在 100 KHz,KOA 等效电路模拟测试拐点在 1 MHz。