

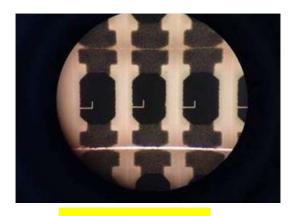
§0.摘要

镭射是贴片电阻生产过程中不可缺少的一个制程,通过镭射切割将电阻阻值修整到客户需要的阻值精度范围内。不同的产品,不同阻值切割方式也会有不同,"一型"切;"二型"切;"三型"切;"上型"切;"上型"切等。

§1. 切线图片

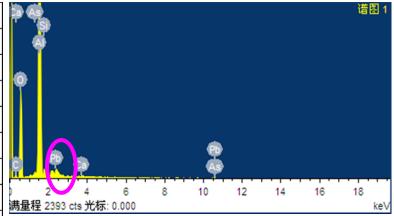
§2.LS 切线制程检验工具

40X 显微镜下确认切线外观及位置


§3. LS 切線原理說明

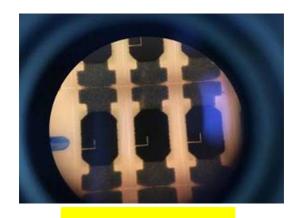
§4. LS 切线外观分析

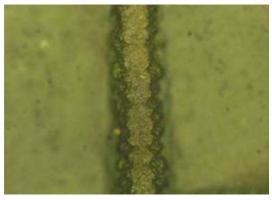
1. 取 LS 生产车间任意料片,切线进行外观确认 OK 物料进行研磨,做 SEM 分析切线成分,铅成分重量比为 3.69%,如下:



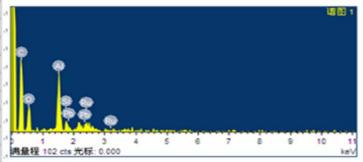
切线外观 40 X

切线外观 1000X


元素	量重	原子
プロボ	百分比	百分比
СК	4.79	8.2
ок	41.99	53.95
Al K	47.55	36.23
Si K	1.43	1.04
Ca K	0.29	0.15
As L	0.26	0.07
Pb M	3.69	0.37
N.H.	100	


成分检测

2. 故意生产切线不干净的半成品送 SEM 进行成分测量, 铅成分重量比为 6.33%具体如下:



切线外观 40 X

切线外观 1000X

	元素。	重量。	原子。	а.
	-,4	百分比。	百分比。	А
	CK.	54.86.4	68.21.4	A
	OK.	26.29.4	24.54.4	a
	Al K.	10.28.	5.69.4	ja.
	Si K.	2.03.4	1.08.4	A.
	Port	0.21.	0.03.4	a
(PhM,	6.33.4	0.46.4	A
		а	.0	.4
	무료.	100.00.		a

成分检测

3. 小结:任取生产制程上LS切线外观的OK的产品及故意切切线有残留的产品进行研磨并做SEM成分分析,切线OK的产品切线槽内含有少量的铅含量(小于5%,由于电阻层内含有铅成分,切割后会有微量粉末残余,导致测量会有铅成分),切线残留的产品切线槽内含铅含量较多(大于5%)

§5. 结论

经过以上分析研究, 切线 OK 或切线有残留的产品内均会有一定的铅成分存在, 切线 OK 的产品切线槽内铅含量较少(< 5%), 切线有残留的产品切线槽内铅含量相对较高(> 5%), 当粉末量达到一定量, 使用环境比较潮湿的情况下可能会出现阻值偏小的现象, 此类环境或线路敏感区域建议客户端采取防护措施。